Как расписать факториал 2n 1

Как расписать факториал 2n 1

Факториал – так называют часто встречающуюся в практике функцию, определённую для целых неотрицательных чисел. Название функции происходит от английского математического термина factor – «сомножитель». Обозначается она n!. Знак факториала «!» был введён в1808 году во французском учебнике Хр. Крампа.

Для каждого целого положительного числа n функция n! равна произведению всех целых чисел от 1 до n.

Для удобства полагают по определению 0! = 1. О том, что нуль – факториал должен быть по определению равен единице, писал в 1656 году Дж. Валлис в «Арифметике бесконечных».

Функция n! растёт с увеличением n очень быстро. Так,

При преобразовании выражений, содержащих факториал, по лезно использовать равенство

(n + 1)! = (n + 1) • n! = (n + 1) • n • (n – 1)! (1)

Английский математик Дж. Стирлинг в 1970г. предложил очень удобную формулу для приближённого вычисления функции n!:

где е = 2,7182. — основание натуральных логарифмов.

Относительная ошибка при пользовании этой формулой очень невелика и быстро падает при увеличении числа n.

Способы решения выражений, содержащих факториал, рассмотрим на примерах.

Пример 2. Вычислить 10! 8!

Решение. Воспользуемся формулой (1):

Решение. Согласно формуле (1) имеем

Раскрыв скобки в произведении, получаем квадратное уравнение

n 2 + 5n — 84 = 0, корнями которого являются числа n = 7 и n = -12. Од нако факториал определен только для неотрицательных целых чисел, т. е. для всех целых чисел n ≥ 0. Поэтому число n = -12 не удовлетворя ет условию задачи. Итак, n = 7.

Пример 4. Найти хотя бы одну тройку натуральных чисел х, у и z, для которой верно равенство х! = y! • z!.

Решение. Из определения факториала натурального числа n сле дует, что

Положим в этом равенстве n + 1 = у! = х, где у — произвольное нату ральное число, получим

Теперь видим, что искомые тройки чисел можно задать в виде

где y- натуральное число, больше 1.

Например, справедливы равенства

Пример 5. Определить, сколькими нулями оканчивается деся тичная запись числа 32!.

Решение. Если десятичная запись числа Р = 32! оканчивается k нулями, то число Р можно представить в виде

где число q не делится на 10. Это означает, что разложение числа q на простые множители не содержит одновременно 2 и 5.

Поэтому, чтобы ответить на поставленный вопрос, попробуем опреде лить, с какими показателями в произведение 1 • 2 • 3 • 4 • . • 30 • 31 • 32 входят числа 2 и 5. Если число k — наименьший из найденных показателей, то число Р будет оканчиваться k нулями.

Итак, определим, сколько чисел среди натуральных чисел от 1 до 32 делятся на 2. Очевидно, что их количество равно 32/2 = 16. Затем определим, какое количество среди найденных 16 чисел делится на 4; затем — какое количество из них делится на 8 и т. д. В результате получим, что среди тридцати двух первых натуральных чисел на 2 делится 16 чисел,

Читайте также:  Как определить внешний ip адрес роутера

из них на 4 делятся 32/4 = 8 чисел, из них на 8 делятся 32/8 = 4 числа, из них на 16 делятся 32/16 = 2 числа и, наконец, из них на 32 делятся 32/32=1, т.е. одно число. Понятно, что сумма полученных количеств:

16 + 8 + 4 + 2 + 1 = 31

равна показателю степени, с которым число 2 входит в 32!.

Аналогично определим, сколько чисел среди натуральных чисел от 1 до 32 делятся на 5, а из найденного количества на 10. Разделим 32 на 5.

Получим 32/5 = 6,4. Следовательно, среди натуральных чисел от 1 до 32

существует 6 чисел, которые делятся на 5. Из них на 25 делится одно

число, так как 32/25 = 1,28. В результате число 5 входит в число 32! с пока зателем, равным сумме 6+1 = 7.

Из полученных результатов следует, что 32!= 2 31 5 7 • т, где число т не делится ни на 2, ни на 5. Поэтому число 32! содержит множитель

10 7 и, значит, оканчивается на 7 нулей.

Итак, в данном реферате определено понятие факториала.

Приведена формула английского математика Дж Стирлинга для приближённого вычисления функции n!

При преобразовании выражений, содержащих факториал, по лезно использовать равенство

(n + 1)! = (n + 1) • n! = (n + 1) • n • (n – 1)!

На примерах подробно рассмотрены способы решения задач с факториалом.

Факториал используется в различных формулах в комбинаторике, в рядах и др.

Например, количество способов выстроить n школьников в одну шеренгу равняется n!.

Число n! равно, например, количеству способов, которыми можно n различных книг расставить на книжной полке, или, например, число 5! равно количеству способов, которыми пять человек можно рассадить на одной скамейке. Или, например, число 27! равно количеству способов, которыми наш класс из 27 учеников можно выстроить в ряд на уроке физкультуры.

При решении задач по комбинаторике используют следующие важные понятия

Факториалы
Перестановки
Размещения
Сочетания

Факториалы

Для произвольного натурального числа n формула

определяет факториал числа n ( n ! читается, как n – факториал).

Перестановки

Рассмотрим следующую задачу.

Задача . 6 карточек пронумерованы числами 1, 2, 3, 4, 5, 6. Карточки наугад выкладываем в ряд. Сколько при этом можно получить различных шестизначных чисел?

Читайте также:  Как перезагрузить андроид микромакс

Решение . Сначала слева направо пронумеруем места в ряду, куда выкладываем карточки: первое место, второе, третье, четвертое, пятое, шестое. На первое место можно положить одну из 6 карточек. Для этого есть 6 способов. В каждом из этих 6 способов на второе место можно положить одну из оставшихся 5 карточек. Таким образом, существует

способов, чтобы положить карточки на первое и второе места. В каждом из этих 30 способов на третье место можно положить одну из оставшихся 4 карточек. Следовательно, существует

способов, чтобы положить карточки на первое, второе и третье места. В каждом из этих 120 способов на четвертое место можно положить одну из оставшихся 3 карточек. Отсюда вытекает, что существует

способов, чтобы положить карточки на первое, второе, третье и четвертое места. В каждом из этих 360 способов на пятое место можно положить одну из оставшихся 2 карточек. Следовательно, существует

способов, чтобы положить карточки на первое, второе, третье, четвертое и пятое места. После этого у нас остается одна единственная карточка, которую мы и кладем на шестое место. Таким образом, при выкладывании карточек можно получить 720 различных шестизначных чисел.

Ответ : 720.

Замечание 1 . В задаче мы рассмотрели 6 пронумерованных карточек и установили, что количество способов выкладывания этих карточек в ряд равно 6!

Если бы у нас было n пронумерованных карточек, то количество способов выкладывания их в ряд равнялось бы n ! .

Замечание 2 . Каждое расположение n пронумерованных карточек в ряд является перестановкой из n элементов , к изучению которых мы сейчас и переходим.

Определение 1 . Пусть n – натуральное число. Рассмотрим произвольное множество, содержащее n элементов. Говорят, что на этом множестве задано упорядочение (отношение порядка) , если его элементы пронумерованы числами 1, 2, 3, … , n .

Множество с заданным упорядочением называют упорядоченным множеством .

Определение 2 . Рассмотрим множество, содержащее n элементов. Перестановкой из n элементов называют любое упорядочение этого множества.

Число перестановок из n элементов обозначают символом Pn .

В соответствии с Замечанием 1, справедлива формула:

Замечание 3 . Введенные в данном разделе перестановки называют также перестановками без повторений .

С понятиями размещений из n элементов по m элементов и сочетаний из n элементов по m элементов можно познакомиться в разделе «Комбинаторика: размещения и сочетания» нашего справочника.

В этой статье я расскажу о факториале, его свойствах и о том, как вычислить его значение с помощью Excel. Мы проверим, как точно вычисляет значение факториала формула Стирлинга и разберем решение типовых задач с факториалами, а на закуску — несколько видеороликов (и конечно расчетный файл эксель). Удачи!

Читайте также:  Как подключиться к айтюнс если айфон отключен

Что такое факториал?

Символ $n!$ называется факториалом и обозначает произведение всех целых чисел от $1$ до $n$. Факториал определен только для целых неотрицательных чисел.

$$n!=1cdot 2cdot 3 cdot . cdot (n-1) cdot n$$

По определению, считают, что $0!=1, 1!=1$. Далее:

$$ 2!=1 cdot 2 = 2,\ 3!=1 cdot 2 cdot 3= 6,\ 4!=1 cdot 2 cdot 3cdot 4= 24,\ 5!=1 cdot 2 cdot 3cdot 4cdot 5= 120,\ . $$

Факториал растет невероятно быстро (недаром он обозначается восклицательным знаком!), существенно быстрее степенной $x^n$ или даже экспоненциальной функции $e^n$ (но медленее чем $e^$)

Факториал широко применяется в комбинаторике — он равен числу всех перестановок $n$-элементного множества, а также входит в формулы для числа сочетаний и размещений. Факториал встречается в математическом анализе (чаще при разложениях функции в степенные ряды), а также в функциональном анализе и теории чисел.

Формулы и свойства факториала

Рекуррентная формула для факториала:

Факториал связан с гамма-функцией по формуле: $n!= Gamma(n+1)$. Фактически, гамма-функция — обобщение понятия факториала на все положительные вещственные функции.

Для любого натурального $n$ выполняется:

$$ (n!)^2 ge n^n ge n! ge n. $$

Любопытная формула связывает факториал и производную степенной функции:

Формула Стирлинга

Для приближенного вычисления факториала применяют асимптотическую формулу Стирлинга:

Обычно для расчетов берут только главный член:

$$ n! approx sqrt <2pi n>left( frac
ight )^n. $$

Ниже вы увидите пример расчета факториала по обычной формуле и с помощью формулы Стирлинга, которая, как видно, дает вполне хорошее приближение (начиная с $n=9$ относительная погрешность уже меньше 1%).

Расчет факториала в Эксель

Для нахождения факториала в Excel нужно использовать специальную функцию =ФАКТР($n$) , где $n$ — число, факториал которого нужно найти.

Пример расчета и ввода формулы ниже на скриншоте, также вы можете скачать расчетный файл

Примеры задач с факториалом

Рассмотрим решение типовых задач.

Пример 1. На полке стоят 8 дисков. Сколькими способами их можно расставить между собой?

Решение. Требуется найти число всех перестановок 8 различных объектов, что вычисляется как раз как факториал:

$$N=8!=1 cdot 2 cdot 3cdot 4cdot 5cdot 6cdot 7cdot 8=40320.$$

Пример 3. Упростить выражение

Пример 4. Упростить дробь, содержащую факториал:

Видео о факториале

Небольшое учебное видео про факториал — определение, свойства, как быстро растет, как вычислить в Excel по встроенной формуле и по приближенной формуле Стирлинга.

Расчетный файл из видео можно скачать

Напоследок — насколько быстро растет факториал!

Ссылка на основную публикацию
Как разблокировать телефон samsung galaxy j1 mini
Характеристики Samsung Galaxy J1 mini Отзывы о Samsung Galaxy J1 mini Инструкция Samsung Galaxy J1 mini Прошивка Samsung Galaxy J1...
Как поставить темную тему на яндекс браузер
Многие разработчики программ и сервисов стараются добавлять альтернативное оформление в виде темного интерфейса. Замена белого цвета удобна тем, кто много...
Как поставить фото в телеграмме на аватарку
Как в Телеграмме поставить фото на аву (аватар) — ведь трудно недооценить ее значение, картинка в профиле не только формирует...
Как разблокировать флешку от защиты записи
Извиняюсь за заголовок, но именно так задают вопрос, когда при действиях с USB флешкой или SD картой памяти Windows сообщает...
Adblock detector