Как сделать спираль архимеда

Как сделать спираль архимеда

Построение спирали Архимеда.

Спираль Архимеда — это траектория точки, движущейся с постоянной скоростью от центра окружности по

радиусу, вращающемуся также с постоянной угловой скоростью.

1. Делим радиус окружности на одинаковое число равных частей (в примере на 8).

2. Делим окружность на такое же число равных частей.

3. Проводим лучи из центра через точки деления окружности.

4. На первом луче откладываем одно деление радиуса.

5. На втором луче откладываем два деления радиуса и т. д.

6. Если строить спираль дальше, то на луче 1 откладываем 8+1 деление радиуса (получаем точку IX ).

7. На втором луче откладываем 8+2 деления радиуса (получаем точку X) .

8. На третьем луче откладываем 8+3 деления радиуса (получаем точку XI) и т. д.

Соединяем точки по лекалу.

Спираль. Спираль Архимеда. Построение спирали Архимеда.

Спиралью называется плоская кривая, описываемая точкой, удаляющейся от центра при совершении кругового движения в плоскости чертежа вокруг центра спирали. На практике различают спирали с постоянным и постепенно возрастающим расстоянием между завитками. Обычно спирали строят по точкам и вычерчивают с помощью лекала.

Для того чтобы расчертить спираль, необходимо наметить не менее двух ее центров. Если вычерчивают спираль из трех или более центров, то обычно центрами спирали являются вершины правильного треугольника или правильного многоугольника. Каждую дугу проводят из последующей вершины до пересечения с лучом из угла треугольника или многоугольника. Радиус при этом каждый раз увеличивается на длину, равную длине стороны треугольника или многоугольника.

Рассмотрим, например, как начертить так называемую «архимедову спираль» (рис. 17, а ). Для этого нужно провести горизонтальную линию и отметить на ней две точки О 1 и О 2, отстоящие одна от другой примерно на 3 мм. Поставив ножку циркуля в одну из этих точек (О 1), проведите дугу радиусом 3 мм (R 1), равную половине окружности. Концы этой дуги должны опираться на горизонтальную ось (в данном примере – сверху).

Читайте также:  Как залить фон в ворде 2010

Затем перенесите ножку циркуля во вторую из отмеченных точек и увеличьте его раствор так, чтобы карандаш попал в конец первой дуги. Снова проведите половину окружности радиусом R 2, опирающуюся на горизонтальную линию, но уже с противоположной стороны (снизу). Таким же образом, переставляя ножку циркуля то в первую, то во вторую точку и каждый раз увеличивая его раствор, продолжайте разворачивать спираль. На рис. 17, а , изображено четыре полных оборота.

Для построения спирали, имеющей три центра (рис. 17, б), находящихся на равных расстояниях один от другого, необходимо предварительно построить равносторонний треугольник 1–2–3 (заштрихован) и продолжить его стороны так, как это показано на рисунке (линии 1–1’, 2–2’ и 3–3’ ).

Из центра 1 проводим дугу 3–1’ радиусом R 1, равным длине стороны треугольника, до пересечения с продолжением стороны 1–1’ . Затем из центра 2 описываем дугу радиусом R 2 = 2R 1 до пересечения с продолжением стороны 2 (линия 2–2’ ). После этого из центра 3 проводим дугу радиусом R 3 = 3R 1 до пересечения с продолжением стороны 3 (линия 3–3’ ) в точке 3’ . После этого возвращаемся в центр 1 и продолжаем построение в такой же последовательности, каждый раз увеличивая радиус дуги на величину стороны треугольника.

Рис. 17. Построение спиралей: а – «архимедова спираль» с двумя центрами; б – трехцентровая спираль; в – эвольвента круга; г, д – ломаные (хордовые) спирали.

Аналогично выполняют спирали с четырьмя, пятью и т. д. центрами.

Эвольвента круга (рис. 17, в ) – это плоская кривая, образуемая точкой на прямой, которая перемещается без скольжения по неподвижной окружности заданного радиуса. Эта кривая иногда называется разверткой окружности. Построение эвольвенты начинается с деления заданной окружности на произвольное число равных частей, например 12. В каждой точке деления проводим касательные к окружности. На каждой из этих касательных последовательно откладываем длину окружности, равную πd /12: в точке 1 – πd /12, в точке 2 – 2πd /12, в точке 3 – 3πd /12 и т. д. На касательной к точке 12 откладываем длину окружности, равную πd . Соединяя последовательно плавной кривой по лекалу полученные на касательных точки 1’, 2’, 3’ и т. д., получим кривую, называемую эвольвентой.

Читайте также:  Игра престолов telltale games концовки

Схема построения ломаных спиралей показана на рис. 17, г, д . Они строятся так же, как и циркульные, но дуги заменяются соответствующими хордами.

Исторические сведения

Архимед (287 г. до н. э. — 212г. до н. э.) — древнегреческий математик, физик и инженер из Сиракуз (остров Сицилия). Он сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений.

Архимедова спираль была открыта Архимедом. Это произошло в III веке до н.э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигались на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние.

Архимедову спираль использовали в древности, как наилучший способ определения площади круга. С ее помощью был улучшен древний греческий метод нахождения площади круга через измерение длины окружности. Спираль дала возможность более точного измерения длины окружности, а следовательно, и площади круга.

В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность — винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции.

Определение спирали Архимеда

Кривую можно рассматривать как траекторию точки, равномерно движущейся по лучу, исходящему из полюса, в то время как этот луч равномерно вращается вокруг полюса.

Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.

Читайте также:  Как перекинуть контакты с айфона на айфон

Построение спирали Архимеда

Чтобы понять, как получается спираль Архимеда, отметим на чертеже точку, которая является центром спирали Архимеда.

Построим из центра спирали окружность, радиус которой равен шагу спирали. Шаг спирали Архимеда равен расстоянию, которое проходит точка по поверхности круга за один его полный оборот.

Разделим окружность на несколько равных частей с помощью прямых линий. На первой линии откладываем одно деление, на второй-два деления, на третьей-три деления и т. д. Затем чертим соответствующее число дуг из центра окружности, проходящих через первое деление,2-ое и т. д.

Расстояния витков правой спирали, считая по лучу, равны ,а расстояния соседних витков, равны.

Уравнение Архимедовой спирали имеет вид:

где — радиус-вектор,- угол вращения,- шаг спирали.

Полярный угол мы отсчитываем от полярной оси, считая его положительным против часовой стрелки.

При вращении луча против часовой стрелки получается правая спираль (синяя линия) при вращении — по часовой стрелке — левая спираль (красная линия).

Полярный радиус-вектор мы будем брать как положительным, так и отрицательным; в первом случае его откладывают в направлении, определяемом углом , а во втором в противоположном направлении.

I.Вычислим площадь, описываемую полярным радиусом спирали при одном его обороте, если началу движения соответствует ,

Если мы найдем площадь круга радиуса ,то получим

То есть, мы получили, что площадь фигуры, ограниченной полярной осью и первым витком спирали, равна площади круга с радиусом, равным наибольшему из полярных радиусов витка.

II.Найдем длину первого витка спирали Архимеда.

Ссылка на основную публикацию
Как сделать прямую палку на клавиатуре
Косая черта – это знак, который можно набрать на клавиатуре компьютера. Он используется в интернете, в системе Windows, программировании, математике...
Как связаться с инстаграм по телефону
В этой статье расскажем о том, как работает горячая линия линия Инстаграмм, можно ли обратиться по телефону или доступен только...
Как связаться с инстаграмом
В этой статье расскажем о том, как работает горячая линия линия Инстаграмм, можно ли обратиться по телефону или доступен только...
Как сделать публичный pgp ключ
Использование PGP/GPG, руководство для нетерпеливых Данная статья представляет собой краткое руководство по использованию GnuPG (он же GPG). В ней вы...
Adblock detector